Angle Metrology for Highly Accurate Topography Measurement: New Developments & Applications

Ralf D. Geckeler, Andreas Just, Michael Krause

Physikalischn-Technische Bundesanstalt PTB
5.23 Angle Metrology
Outline

Deflectometry: Basic Properties & Advantages

Current Applications of Deflectometric Profilers
> Flatness Standard at NMI
 - ESAD, PTB, Germany
> Synchrotron Mirror Metrology
 - NOM, BESSY, Germany
 - DLTP, ALS, US

Angle Metrology in Support of Deflectometry
> Angle Metrology at PTB
> Precision Autocollimator Calibration
> Angle Deviations of Autocollimators
 - Location of Aperture
 - Distance-Dependency
 - 2D Calibration
Why Access Topography by Angle Measurement?

Increase in sensitivity for topography:

\[
\frac{\Delta s}{\Delta z} = 2 \times \frac{300}{3} = \text{factor } 200
\]
Deflectometric Scanning: Basic Principle

Pentaprism

Auto-collimator

Surface under test
Why Use a Pentaprism for Beam Deflection?

Straightness errors of mechanical stages

> Conv. linear stage: ≈ 10 arcsec / $50 \, \mu$rad $3 \, \mu$m @ 500 mm
> Air-bearing stage: ≈ 1 arcsec / $5 \, \mu$rad 300 nm @ 500 mm
> Wanted: ≈ 0.001 arcsec / $5 \, n$rad 0.3 nm @ 500 mm

Straightness error of stage: 1st order error influence
Why Use a Pentaprism for Beam Deflection?

Ultra-stable beam deflection by pentaprism
> Highly robust with respect to angular rotations of prism
> Suppression of stage errors: factor 1000 – 10000
Traceability of Deflectometric Topography Measurement

Topography derived from measurands angle & length

Measurand traceability: angle

Autocollimator calibration:
Std. uncertainty
$u = 5$ milliarcsec
(24 nrad)

PTB 5.23 Angle Metrology

Natural straightness standard:
propagation of light

Ultra-stable beam deflection by pentaprism

Measurand traceability: length
(for positioning only, not for topography)

Calibration of length encoder or length interferometer
Summary: Advantages of Deflectometric Topography Measurement

- High sensitivity of angle measurement to topography changes
- Robustness with respect to environmental influences
- Based on natural straightness standard: propagation of light
- Excellent measurand (angle & length) traceability
- Fully independent of material straightness artifact
Outline

Deflectometry: Basic Properties & Advantages

Current Applications of Deflectometric Profilers

> Flatness Standard at NMI
 - ESAD, PTB, Germany

> Synchrotron Mirror Metrology
 - NOM, BESSY, Germany
 - DLTP, ALS, US

Angle Metrology in Support of Deflectometry

> Angle Metrology at PTB
> Precision Autocollimator Calibration
> Angle Deviations of Autocollimators
 - Location of Aperture
 - Distance-Dependency
 - 2D Calibration
Flatness Standard: Liquid Hg Surface

- **Hg layer**: Thickness $200 \pm 50 \ \mu m$
- **Holder**: - Silver (amalgamation) & non-magnetic steel
 - Structured floor (vibration-dampening)

- **Avoid**: temperature gradients, vibrations, static charges,
 magnetic fields, liquid flow by movement, contaminations, oxide layer ...

Problem: Spherical shape
(1nm @ 250 mm)

Problem: Vibrations

Problem: Edge effects
Shearing Deflectometry: Basic Principle

Angle difference = *intrinsic* surface property
(independent of whole-body tilting)
Definition of Flatness Using Angle Differences

Non-flat Surface

Flat Surface

Angle differences = 0
(independent of shear values, position ...)

Shear
ESAD: Sequential Implementation

Shearing
(sequential implementation by use of movable pentaprism)

STEP 1
- Pentaprism at position 1
- Measure slope

STEP 2
- Pentaprism at position 2 (shifted by shear length s)
- Measure slope

Scanning

STEP 3
- Shift surface under test

Repeat sequence
(to obtain slope differences at different positions on surface under test)
ESAD Facility

Scan area up to 500 x 500 mm²
ESAD Mechanical Implementation

- Autocollimator
- Actuator
- Prism tilting unit
- Pentaprism
- Linear stage
- Shielding tube
- Aperture holder
- Surface under test
ESAD Facility

Note:
> Built up by speaker in 2000-2007
> located at Optics Division of PTB
Angular Adjustment of Optical Components

Adjust:
- Roll SUT (α_{st})
- Roll PP (α_{pp})
- Yaw PP (γ_{pp})
Ultra-stable beam deflection by pentaprism

> Error in V angle ± 0.21 milliarcsec @ 95% conf. level
 (angular error in pentaprism orientation: ± 5 arcsec)

> Error reduction by a factor $10,000$
Zerodur Transfer Standards
ESAD Measurement: Zerodur Substrate

> Shear numbers 4 & 35 (140); scan length 200 mm; phys. shears 5.7 & 50 mm
> Shear numbers 4 & 35 (140); scan length 80 mm; phys. shears 2.3 & 20 mm

ESAD Measurement: Zerodur Substrate

> Shear numbers 4 & 35 (140); scan length 200 mm; phys. shears 5.7 & 50 mm
> Shear numbers 4 & 35 (140); scan length 80 mm; phys. shears 2.3 & 20 mm

Topo. 7.6 nm pv @ 200 mm
Difference 0.10 nm rms @ 80 mm
Topo. 0.8 nm pv @ 80 mm

Repeatability topo.
0.37 nm rms @ 200 mm
Repeatability topo.
0.10 nm rms @ 80 mm

Measurement Comparison
ESAD - Fizeau Interf. (Hg)

Fizeau: Using liquid Hg mirror as flatness standard

Difference: 0.55 nm rms @ 120 mm

Summary: ESAD (Extended Shear Angle Difference)

- **Principle:** Shearing deflectometry (slope differences)

- **Basis:** straight light propagation

- **Metrological advantages**
 - Near-constant measurement conditions - independent of scan length
 - Optimized measurand traceability to SI units (angle & length)
 - No material straightness artifact (absolute measurement)

- **Std. meas. uncertainty topography** $u_{\text{topo}} < 1 \text{ nm}$
 (near-plane surfaces, up to 500 mm scan length)
Outline

Deflectometry: Basic Properties & Advantages

Current Applications of Deflectometric Profilers
> Flatness Standard at NMI
 - ESAD, PTB, Germany
> Synchrotron Mirror Metrology
 - NOM, BESSY, Germany
 - DLTP, ALS, US

Angle Metrology in Support of Deflectometry
> Angle Metrology at PTB
> Precision Autocollimator Calibration
> Angle Deviations of Autocollimators
 - Location of Aperture
 - Distance-Dependency
 - 2D Calibration
NOM: Nano-Optics Measuring Machine (BESSY)

Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung m.b.H., Berlin, Germany

Measurement uncertainty
> Plane surfaces: 0.05 \(\mu \text{rad rms} \)
> Curved surfaces: 0.2 \(\mu \text{rad rms} \)

F. Siewert, BESSY
NOM: Effective Metrology Tool for Post-Processing

Elliptical cylinder for MAX-Lab (Lund, Sweden):
NOM measurement before and after final ion beam treatment

Height:
66 nm pv / 8.5 nm rms
Residual slope:
1 μrad rms

Height:
25 nm pv / 3.6 nm rms
Residual slope:
0.5 μrad rms
DLTP: Developmental Long Trace Profiler (ALS)
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, USA
DLTP: Developmental Long Trace Profiler (ALS)
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, USA
Outline

Deflectometry: Basic Properties & Advantages

Current Applications of Deflectometric Profilers

> Flatness Standard at NMI
 - ESAD, PTB, Germany
> Synchrotron Mirror Metrology
 - NOM, BESSY, Germany
 - DLTP, ALS, US

Angle Metrology in Support of Deflectometry

> Angle Metrology at PTB
> Precision Autocollimator Calibration
> Angle Deviations of Autocollimators
 - Location of Aperture
 - Distance-Dependency
 - 2D Calibration
Angle Metrology at PTB

- Autocollimator Manufacturers: Möller-Wedel Optical
- Synchrotron Metrology: BESSY, ALS / LBNL, USA
- NMIs: AIST / NMJ, Japan, BIPM (G-Exp.), France
- Manufacturers Rotary Tables & Encoders: Johannes Heidenhain

R&D / Calibration Autocollimators

u = 0.005 arcsec (CMC)

Primary Angle Standard
u = 0.001 arcsec

Angle Comparator WMT 220

R&D / Calibration Angle Encoders

u = 0.005 arcsec (CMC)

Calibration Algorithms
Self & cross calibration
Primary Angle Standard: Comparator WMT 220

PTB, 5.23 Angle Metrology, located in clean room facility

Calibration uncertainties

WMT 220
\[u_{WMT} = 1 \text{ milliarcsec} \]
\[(5 \text{ nrad}) \]

Calibrations
AC & encoders (CMC)
\[u = 5 \text{ milliarcsec} \]
\[(24 \text{ nrad}) \]
\[U = 10 \text{ milliarcsec (k=2)} \]
Primary Angle Standard: Comparator WMT 220

Grating / signal period: $2^{17} / 2^{18}$ in 2π rad: 10 arcsec / 5 arcsec
Interpolation factor: $2^{12} = 4096$
Resolution per reading head: 2^{30} in 2π rad: 0.0012 arcsec
WMT 220: Optimized Reading Head Arrangement

Main reading heads
> 2x4 (diametrically opposed)
> Relative angular orientation: 45 deg

Auxiliary reading heads
> 2x4 (diametrically opposed)
> For self-calibration
> Relative angular orientation:
 22.5 / 11.25 / 5.63 / 2.81 deg

Calibration
> Cross-calibration
> Self-calibration
Outline

Deflectometry: Basic Properties & Advantages

Current Applications of Deflectometric Profilers
- Flatness Standard at NMI
 - ESAD, PTB, Germany
- Synchrotron Mirror Metrology
 - NOM, BESSY, Germany
 - DLTP, ALS, US

Angle Metrology in Support of Deflectometry
- Angle Metrology at PTB
 - Precision Autocollimator Calibration
 - Angle Deviations of Autocollimators
 - Location of Aperture
 - Distance-Dependency
 - 2D Calibration
Electronic Autocollimator (AC): Principle

Autocollimator

- CCD line
- Illumination & reticle
- Beam splitter
- Collimator objective

Surface under test
Electronic Autocollimator (AC): Principle

\[d = f \tan(2\alpha) \]

Reticle image
SUT angle \(\alpha \)

Reticle image
\(\alpha = 0 \)

Autocollimator

CCD line

Illumination & reticle

Beam splitter

Collimator objective

Surface under test

\(\alpha \)
AC Calibration: Stability

Difference AC angle deviation 2004 / 2005:
> 1.3 milliarcsec (6 nrad) rms
> Slope difference $4 \cdot 10^{-7}$

Recent AC Calibrations: Synchrotron Metrology Support

<table>
<thead>
<tr>
<th>Institute</th>
<th>Application</th>
<th>AC type</th>
<th>AC aperture</th>
<th>SUT distance</th>
<th>SUT refl.</th>
<th>AC axis</th>
<th>Angle range [arcsec]</th>
<th>Angle sampl. [arcsec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESSY</td>
<td>Calib. device</td>
<td>Elcomat HR (mod.)</td>
<td>15 mm</td>
<td>430 mm</td>
<td>low</td>
<td>Y</td>
<td>±600 ±500 ±1500</td>
<td>0.2^a 5 50</td>
</tr>
<tr>
<td>ALS</td>
<td>UTM (Universal Test Mirror)</td>
<td>Elcomat 3000</td>
<td>15 mm</td>
<td>250 mm</td>
<td>low</td>
<td>X / Y</td>
<td>±1000 ±10</td>
<td>10 0.1</td>
</tr>
<tr>
<td>ALS</td>
<td>DLTP (Developm. Long Trace Profiler)</td>
<td>Elcomat 3000</td>
<td>2.5 mm</td>
<td>330 / 550 mm</td>
<td>high</td>
<td>X / Y</td>
<td>±1000 ±10</td>
<td>10 0.2 0.02 0.2 0.2</td>
</tr>
<tr>
<td>PTB</td>
<td>TMS (Traceable Multi-Sensor)</td>
<td>Elcomat 3000</td>
<td>18 / 5 / 3 mm</td>
<td>250 / 350 / 440 / 560 mm</td>
<td>low / high</td>
<td>X / Y</td>
<td>±1000 ±20 600-1000</td>
<td>20 0.2 0.2</td>
</tr>
</tbody>
</table>

(a): Unique 4 week experimental calibration run
Outline

Deflectometry: Basic Properties & Advantages

Current Applications of Deflectometric Profilers
> Flatness Standard at NMI
 - ESAD, PTB, Germany
> Synchrotron Mirror Metrology
 - NOM, BESSY, Germany
 - DLTP, ALS, US

Angle Metrology in Support of Deflectometry
> Angle Metrology at PTB
> Precision Autocollimator Calibration
 > Angle Deviations of Autocollimators
 - Location of Aperture
 - Distance-Dependency
 - 2D Calibration
AC Angle Deviations: External Parameters

Aperture stop
- Diameter & shape
- Position
 - longitudinal: along AC’s optical axis
 - lateral: perpendicular to optical axis

Surface under test (SUT)
- Reflectivity
- Curvature
- Effective path length (between AC and SUT)
- Sagittal slope (cross-talk AC measuring axes)

2D calibration possible?
AC Calibration: Distance Aperture - SUT

Distance aperture - reflecting surface 0, 300, 390 mm
AC Calibration: Distance Aperture - SUT

Periodic angle deviations:

> Vignetting distorts image of reticle pattern on CCD

> Evaluation of sub-pixel location of image on CCD; Intra-pixel Quantum Efficiency (QE) variation

AC = 4 milliarcsec

> AC aperture: 5 mm diam.
> SUT distance: 400 mm
> SUT coating: none
> Sampling: 0.1 arcsec
> Std. uncertainty: \(u_{AC} = 4 \) milliarcsec
AC Calibration: Lateral Displacement of Aperture

Lateral displacement ± 5 mm
AC Calibration: Lateral Displacement of Aperture

Lateral displacement ±5 mm > slope of AC angle deviation: ±10^{-3}

> AC aperture: 5 mm diam.
> SUT distance: 400 mm
> SUT coating: none
> Sampling: 0.1 arcsec
> Std. uncertainty: u_{AC} = 4 milliarcsec
Outline

Deflectometry: Basic Properties & Advantages

Current Applications of Deflectometric Profilers
> Flatness Standard at NMI
 - ESAD, PTB, Germany
> Synchrotron Mirror Metrology
 - NOM, BESSY, Germany
 - DLTP, ALS, US

Angle Metrology in Support of Deflectometry
> Angle Metrology at PTB
> Precision Autocollimator Calibration
> Angle Deviations of Autocollimators
 - Location of Aperture
 - Distance-Dependency
 - 2D Calibration
AC Beam Path: Dependency on SUT Distance

Problem: Change in beam deflection = path length \times angle
AC Beam Path: Dependency on SUT Distance

Problem: Change in beam deflection = path length x angle

Distance-dependent angle deviations by:
- Optical aberrations (objective, beam splitter …)
- Alignment errors (including CCD)

CCD out of focal plane: $\Delta \alpha \sim \alpha$
AC Angle Deviations: Distance-Dependency

Topography error from distance change 250 mm - 560 mm

- AC aperture 18 mm: Relative topography error \(\leq 5 \cdot 10^{-5} \)
- AC aperture 5 mm: Relative topography error \(\leq 4 \cdot 10^{-4} \)

SUT slope range \(\leq \pm 980 \) arcsec \((\pm 4.75 \) mrad\), e.g., radius 10 m, profile length 95 mm

Topography Error from AC Distance-Dependency

SUT slope range ± 980 arcsec (± 4.75 mrad),
e.g., radius 10 m, profile length 95 mm

<table>
<thead>
<tr>
<th>Change in distance to SUT [mm]</th>
<th>Relative topography error $\times 10^{-4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (250 - 350)</td>
<td>1</td>
</tr>
<tr>
<td>190 (250 - 440)</td>
<td>2</td>
</tr>
<tr>
<td>310 (250 - 560)</td>
<td>4</td>
</tr>
</tbody>
</table>

- Aperture 18 mm
- Aperture 5 mm
- Aperture 3 mm

- SUT coating: aluminum
- Calibration range ± 1000 arcsec
- Sampling: 20 arcsec
Topography Errors from AC Measurement Conditions

SUT slope range: ±980 arcsec (±4.75 mrad)

<table>
<thead>
<tr>
<th>Changed condition</th>
<th>Fixed condition(s)</th>
<th>Relative topography error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AC aperture</td>
<td>SUT distance</td>
</tr>
<tr>
<td>SUT reflectivity 4% (uncoated) to high (aluminum)</td>
<td>18 mm</td>
<td>560 mm</td>
</tr>
<tr>
<td>AC aperture 18 mm to 3 mm</td>
<td>-</td>
<td>440 mm</td>
</tr>
<tr>
<td>AC aperture 5 mm to 3 mm</td>
<td>-</td>
<td>440 mm</td>
</tr>
<tr>
<td>SUT distance 250 mm to 560 mm</td>
<td>18 mm</td>
<td>-</td>
</tr>
<tr>
<td>SUT distance 250 mm to 560 mm</td>
<td>5 mm</td>
<td>-</td>
</tr>
</tbody>
</table>

SUT reflectivity high unless otherwise stated.
Outline

Deflectometry: Basic Properties & Advantages

Current Applications of Deflectometric Profilers
- Flatness Standard at NMI
 - ESAD, PTB, Germany
- Synchrotron Mirror Metrology
 - NOM, BESSY, Germany
 - DLTP, ALS, US

Angle Metrology in Support of Deflectometry
- Angle Metrology at PTB
- Precision Autocollimator Calibration
- Angle Deviations of Autocollimators
 - Location of Aperture
 - Distance-Dependency
 - 2D Calibration
2D Autocollimator Calibration (Simulation)

- Relevant to synchrotron metrology
- Extremely challenging (traceability)
- No NMI active in this area

Simulation from real 1D AC calibrations
Summary: Angle Metrology for Deflectometry

> **Primary angle standard WMT 220 at PTB**
 Std. uncertainty calibration $u_{WMT} = 1$ milliarcsec (5 nrad)

> **Flexible AC calibration according to user specification**
 Std. uncertainty AC calibration $u_{AC} = 5$ milliarcsec (24 nrad)

> **Deflectometric set-up influences AC calibration**
 - Aperture stop: Diameter, shape & position
 - SUT: Reflectivity, curvature, path length, sagittal slope
 - Measurement conditions = calibration conditions

> **Current / future challenges**
 - Distance-dependent effects
 - 2D calibration
Thank You very much:

For the opportunity to speak at the National Institute of Advanced Industrial Science and Technology (AIST).

For the privilege of Your attendance and attention.

For the support of this visit to beautiful Japan by Dr. Toshiyuki Takatsuji and AIST.